Journal of Organometallic Chemistry, 262 (1984) 123-136 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE UND EIGENSCHAFTEN NEUER KUPFER- UND GOLD-KOMPLEXE DES TYPS $C_5H_5MPR_3$, $C_5Me_5MPR_3$ UND $R''C_2MPR_3$ (M = Cu, Au) SOWIE DIE KRISTALLSTRUKTUR VON $C_5H_5AuPPr_3^i$

H. WERNER*, H. OTTO, TRI NGO-KHAC und Ch. BURSCHKA

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.) (Eingegangen den 3. August 1983)

Summary

The complexes $C_5H_5CuPR_3$ (R = Me, Pr¹), $C_5H_5AuPR_3$ (R = Me, Pr¹), $C_5Me_5CuPR_3$ (R = Me, Pr¹, Ph) and $C_5Me_5AuPR_3$ (R = Pr¹, Ph) are prepared from [ClCuPR₃]_n or ClAuPR₃ and LiC₅H₅ (TlC₅H₅) or LiC₅Me₅, respectively. According to the ¹H and ¹³C NMR spectra, the cyclopentadienyl and pentamethylcyclopentadienylgold compounds are fluxional in solution. The X-ray crystal structure of $C_5H_5AuPPr_3^i$ has been determined at -120° C. The gold atom is in a linear arrangement (P-Au-C(1) = 177.0(2)°) and primarily σ -bonded to the cyclopentadienyl ring which shows a weak "slip distortion" toward a η^3 -mode of coordination. The complexes $C_5R'_5AuPR_3$ (R' = H, Me) and $C_5Me_5CuPPr_3^i$ react with 1-alkynes such as C_2H_2 , HC₂Ph and HC₂CO₂Me to form alkinylgold and copper compounds R^{''}C₂MPR₃. They have been characterized by IR, UV and NMR (¹H, ¹³C, ³¹P) spectroscopy.

Zusammenfassung

Die Komplexe $C_5H_5CuPR_3$ (R = Me, Pr^1), $C_5H_5AuPR_3$ (R = Me, Pr^1), $C_5Me_5CuPR_3$ (R = Me, Pr^1 , Ph) und $C_5Me_5AuPR_3$ ($R = Pr^1$, Ph) werden durch Reaktion von [ClCuPR_3]_n bzw. ClAuPR_3 und LiC_5H_5(TlC_5H_5) bzw. LiC_5Me_5 dargestellt. Wie die ¹H- und ¹³C-NMR-Spektren belegen, zeigen die Cyclopentadienyl- und Pentamethylcyclopentadienylgold-Verbindungen in Lösung ein fluktuierendes Verhalten. Die Kristallstruktur von $C_5H_5AuPPr_3^1$ wurde bei – 120°C bestimmt. Das Goldatom ist linear koordiniert und in erster Linie durch eine σ -Bindung mit dem Cyclopentadienylring verknüpft, der allerdings eine schwache "slip distortion" in Richtung einer η^3 -Koordination zeigt. Die Komplexe $C_5R'_5AuPR_3$ (R' = H, Me) und $C_5Me_5CuPPr_3^1$ reagieren mit 1-Alkinen wie z.B. C_2H_2 , HC_2Ph und HC_2CO_2Me unter Bildung der entsprechenden Alkinylgold- und -kupfer-Verbindungen $R''C_2MPR_3$. Diese wurden an Hand ihrer IR-, UV- und NMR-Spektren (¹H, ¹³C, ³¹P) charakterisiert.

Der vorliegenden Arbeit lagen 2 Fragen zugrunde:

(1) Sind Pentamethylcyclopentadienyl(triorganylphosphan)kupfer- und -gold-Verbindungen erhältlich und sind sie strukturell den entsprechenden Cyclopentadienyl-Verbindungen $C_5H_5CuPR_3$ und $C_5H_5AuPR_3$ analog?

(2) Reagieren die Verbindungen $C_5H_5MPR_3$ und – falls zugänglich – $C_5Me_5MPR_3$ (M = Cu, Au) mit 1-Alkinen unter oxidativer Addition und ermöglichen so auf ähnliche Weise, wie wir es kürzlich mit Rh^I als Zentralatom gezeigt haben [1], die Darstellung von Kupfer- und Gold-Vinyliden-Komplexen?

Darstellung und Eigenschaften von $C_5H_5MPR_3$ und $C_5Me_5MPR_3$ (M = Cu, Au)

Die guten Erfahrungen, die wir bei unseren Arbeiten über Metall-Basen des Typs $C_5H_5M(PR_3)_2$, $C_5H_5M(PR_3)L$, $C_5Me_5M(PR_3)_2$ und $C_5Me_5M(PR_3)L$ (M = Co, Rh; L = CO, CNR, C_2H_4 , C_2R_2 etc.) [2,3] mit PMe₃ und PPr₃ als Liganden gemacht hatten, veranlassten uns, auch für die vorliegenden Untersuchungen diese Phosphane (daneben noch PPh_3) einzusetzen. Von den für die Darstellung von $C_{3}H_{5}MPR_{3}$ und $C_{5}Me_{5}MPR_{3}$ (M = Cu, Au; PR₃ = PMe₃, PPr₃, PPh₃) benötigten Ausgangsverbindungen [CIMPR₃]_n war lediglich diejenige mit M = Cu und $PR_3 =$ PPr¹ noch nicht bekannt. Sie wird durch Umsetzung von CuCl und Triisopropylphosphan im Molverhältnis 1/1 in Benzol erhalten. Wie eine osmometrische Molekulargewichtsbestimmung zeigt, liegt sie in Benzol dimer, d.h. als [ClCuPPr₁]₂ (I), vor. Bei der Umsetzung von CuCl mit der doppelt molaren Menge PPr¹₃ entsteht die Verbindung ClCu(PPr_{1}^{3}), (II), die in Benzol monomer ist. Sowohl I als auch II sind farblose, kristalline Feststoffe, die gegenüber Wasser und Luft bemerkenswert unempfindlich sind. Sie lösen sich nicht nur in Benzol sondern sogar in Pentan und zeigen in Nitromethan keine Leitfähigkeit. Die Struktur von I dürfte derjenigen von $[ClCuP(C_6H_{11})_3]_2$ entsprechen [4].

$$\frac{Pr'_{3}P-Cu}{Cl}Cu-PPr'_{3} \xrightarrow{PPr'_{3}} CuCl \xrightarrow{PPr'_{3}} \frac{Pr'_{3}P}{(1/1)} CuCl \xrightarrow{Pr'_{3}P} Cu-Cl$$
(I)
(II)

Die Reaktionen von $[ClCuPMe_3]_4$ [5] und I mit TlC_5H_5 in Benzol ergeben in ca. 70% Ausbeute die Cyclopentadienylkupfer-Verbindungen $C_5H_5CuPR_3$ (III, IV). Sie sind in ihren Eigenschaften den schon bekannten Komplexen $C_5H_5CuPPh_3$, $C_5H_5CuPEt_3$ und $C_5H_5CuPBu_3^n$ [6] an die Seite zu stellen. Die Goldverbindungen

V, VI, welche farblose, luftempfindliche Feststoffe darstellen, werden auf analoge Weise erhalten. Die entsprechenden Vertreter mit PPh_3 und PEt_3 waren ebenfalls bereits in der Literatur beschrieben [7,8].

Für die Synthese der Pentamethylcyclopentadienylkupfer- und -gold-Verbindungen VII-XI wurde LiC_5Me_5 in Benzol verwendet. Der Trimethylphosphangold-Komplex $\text{C}_5\text{Me}_5\text{AuPMe}_3$ lässt sich – selbst bei Durchführung der Reaktion von ClAuPMe₃ und LiC_5Me_5 in Toluol bei – 78°C – nicht isolieren. Die Ausbeute an X, XI ist erstaunlicherweise wesentlich besser als diejenige von VII-IX, was vermutlich auf die grössere Labilität der Kupferverbindungen in Lösung zurückzuführen ist. Die Darstellung von VII aus einem Teilchen der Zusammensetzung [C₅Me₅Cu(THF)] und PPh₃ wurde ebenfalls in einer soeben erschienenen Kurzmitteilung von Stone et al. erwähnt [9].

In Tab. 1 sind die ¹H-, ¹³C- und ³¹P-NMR-Daten der Verbindungen III-XI zusammengestellt. Im Hinblick auf eine strukturelle Aussage sind vor allem die 13 C-NMR-Spektren von Bedeutung, die im Fall der Goldkomplexe C₅H₅AuPR₃ auf eine monohapto-Koordination des Rings (wie sie auch im Kristall von VI vorliegt) hinweisen. Als Vergleich kann hier das ¹³C-NMR-Spektrum von $(\eta^5-C_sH_s)Pd(\eta^1-\eta^2)$ $C_{5}H_{5}$)PPr₃ angeführt werden, in dem (bei $-30^{\circ}C$ in Toluol- d_{8}) das Signal des η^{5} -gebundenen Ringliganden bei δ 100.63 und dasjenige des η^{1} -gebundenen Ringliganden bei δ 110.82 beobachtet wird [10]. Für die C₅Me₅-Goldverbindungen X, XI ist eine analoge Struktur anzunehmen. Das Auftreten eines einzigen Signals für die $C_{s}H_{s}$ - bzw. $C_{s}Me_{s}$ -Protonen und -Kohlenstoffatome in den Spektren von V, VI sowie X, XI – selbst bei – 80°C – deutet an, dass die Komplexe in Lösung eine fluktuierende Struktur besitzen und sich damit ähnlich wie die vergleichbaren Quecksilberverbindungen C_5H_5HgX [11] verhalten. In den C_5H_5 - und C_5Me_5 -Kupferkomplexen dürfte ein pentahapto-gebundener Fünfring vorliegen; die Ahnlichkeit der Eigenschaften mit denjenigen der Verbindungen $C_5H_5CuPPh_3$ und $C_5H_5CuPEt_3$, in denen die η^5 -Koordination durch Röntgenstrukturanalyse gesichert ist [12,13], sprechen zumindest dafür.

Kristallstruktur von $C_5H_5AuPPr_3'$ (VI)

Zur Absicherung der Strukturaussage für die C_5H_5 -Goldverbindungen wurde die Kristallstruktur von VI bestimmt. Die wichtigsten Abstände und Winkel sind in Tab. 2 angegeben. Aufschlussreich ist ein Vergleich mit den kürzlich publizierten Daten des Komplexes (C_5HPh_4)AuPPh₃ [14], die in Tab. 2 jeweils in Klammern angegeben sind. Die recht gute Übereinstimmung lässt darauf schliessen, dass der Einfluss des Phosphans und der Ringsubstituenten auf die Bindung des Cyclopentadienylliganden an das Metall nur gering ist und dass auch Packungseffekte im Kristall keine grosse Rolle spielen.

Von den Strukturparametern von VI ist vor allem der Winkel C(1)-Au-P und der Abstand Au-C(1) von Interesse. Das Goldatom ist wie in CH₃AuPPh₃ (Au-C 212.4(8) pm, C-Au-P 175.1(8)° [15]) praktisch linear koordiniert und mit dem Fünfring im wesentlichen durch eine σ -Bindung verknüpft. Eine zusätzliche schwache Wechselwirkung zwischen dem Metall und den Kohlenstoffatomen C(2) und C(5) ist nicht auszuschliessen. Struchkov et al. haben im Fall von (C₅HPh₄)AuPPh₃ [14] die relativ kurzen Bindungsabstände Au-C(2) und Au-C(5) dahingehend interpretiert, dass eine Koordination des Rings "zwischen η^1 und η^3 " vorliegt. Eine solche Koordination entspricht einem Übergang von einer η^1 -C₅H₅-Metall- in eine η^5 -

com-	¹ H-NMR				¹³ C-NMR					³¹ P-NMR
10.1	δ(C ₅ R' ₅)	J(PH)	δ(PR ₃)	J(PH)	8(C5R5)	J(PC)	δ(C ₅ R' ₅)	δ(PR ₃)	J(PC)	ø
1	5.47(s)		0.75(d)	7.0						
>	5.43(s)		1.49(m)							
			(pp)06.0	14.4 "						
	6.67(d)	3.6	0.85(d)	11.8	111.68(d)	5.6		15.03(d)	33.5	– 6.0(s)
Į	6.68(d)	2.8	1.30(m)		109.83(s)			23.03(d)	25.2	63.8(s)
	,		0.77(dd)	15.5 "				19.90(s)		
П	2.51(s)		0.75(d)	7.0	101.26(s)		11.87(s)	16.57(d)	27.9	- 48.7(br)
III	2.51(s)		1.55(m)		100.66(s)		11.89(s)	21.98(d)	13.7	45.1(s)
			0.85(dd)	14.2 '				20.11(s)		
×	2.12(s)		7.35(m)		100.10(s)		10.53(s)	133.22(s)		30.3(br)
								132.67(s)		
								131.38(s)		
	2.40(d)	1.9	1.40(m)		119.05(d)	9.6	14.15(s)	21.33(d)	19.1	62.6(s)
			0.83(dd)	14.6 "				19.10(s)		
n	2.43(d)	2.1	7.30(m)		119.51(d)	11.0	13.12(s)	133.19(s)		32.9(s)
	~							132.61(s)		
								130.66(s)		

" J(HH) 6.0 Hz. ^b J(HH) 6.6 Hz. ^c J(HH) 6.7 Hz.

¹H., ¹³C. UND ³¹P.NMR-DATEN DER VERBINDUNGEN III-XI (§ in ppm: Standard TMS int. (¹H und ¹³C) bzw. 85% H, PQ₆ ext. (³¹P); J in Hz; ¹H von III, IV. VII. VIII in C, H., von V, VI. X. XI in C, D., von IX in CH, CI₃; ¹³C in Toluol-d₆, von V, VI bei – 20°C, von VII-XI bei – 60°C; ³¹P von VI, VIII in C, D₆, von

TABELLE 1

TABELLE 2

Abstände (pm)			Winkel (Grad)		
Au-P	226.7(2)	[223.9]	P-Au-C(1)	177.0(2)	[178.6]
Au-C(1)	217.5(9)	[215]	Au - C(1) - C(2)	98.9(6)	[97.8]
Au-C(2)	278.1(9)	[276]	Au - C(1) - C(5)	94.0(5)	[93.4]
Au-C(3)	341.8(8)		C(5)-C(1)-C(2)	105.8(7)	[106]
Au-C(4)	337.0(8)		C(1)-C(2)-C(3)	108.3(8)	[107]
Au-C(5)	268.8(9)	[267]	C(2)-C(3)-C(4)	108.7(8)	[110]
C(1)-C(2)	142.9(12)	[146]	C(3)-C(4)-C(5)	108.9(8)	[108]
C(2)-C(3)	136.6(12)	[138]	C(4)-C(5)-C(1)	108.3(8)	[109]
C(3)-C(4)	140.7(12)	[145]	Au-C(1)-H(11)	98.1(65)	
C(4)-C(5)	135.9(12)	[139]	C(2)-C(1)-H(11)	125.6(66)	
C(5)-C(1)	143.6(12)	[147]	C(5)-C(1)-H(11)	124.0(66)	
P-C(6)	183.4(8)		C(1)-C(2)-H(21)	124.8(59)	
P-C(9)	183.1(7)		C(3)-C(2)-H(21)	126.5(59)	
P-C(12)	185.6(8)		C(1)-C(5)-H(51)	115.1(53)	
C(6) - C(7)	153.6(13)		C(4) - C(5) - H(51)	136.3(54)	
C(6)-C(8)	153.9(11)		Au-P-C(6)	113.5(3)	
C(9)-C(10)	153.4(11)		Au-P-C(9)	109.4(2)	
C(9)-C(11)	151.3(11)		Au - P - C(12)	110.9(2)	
C(12)-C(13)	153.7(11)		P-C(6)-C(7)	115.0(6)	
C(12)-C(14)	151.7(12)		P-C(6)-C(8)	111.3(6)	
C(1)-H(11)	85.0(98)		P-C(9)-C(10)	110.3(5)	
C(2)-H(21)	90.7(83)		P-C(9)-C(11)	110.2(5)	
C(5)-H(51)	97.6(89)		P-C(12)-C(13)	110.2(5)	
			P-C(12)-C(14)	116.1(6)	

ABSTÄNDE UND WINKEL IN VI (in eckigen Klammern Werte für (C₅HPh₄)AuPPh₃ [14])

 C_5H_5 -Metall-Bindung ("slip distortion" [16]), wie sie vor allem bei Cyclopentadienylverbindungen der Hauptgruppenelemente auftritt [17]. Bezüglich einer theoretischen Interpretation sei auf Arbeiten von Hoffmann [18] und Mingos [19] verwiesen.

Der Fünfring in VI ist in sehr guter Näherung planar, wie aus den maximalen Abweichungen von 0.5(9) pm von der besten Ebene hervorgeht. Die Abstände C(2)-C(3), C(3)-C(4) und C(4)-C(5) entsprechen denen eines konjugierten Diensystems. Obwohl die Lagen der C_5H_5 -Wasserstoffatome nicht sehr genau ermittelt werden konnten, führte die Verfeinerung von H(21) und H(51) ebenfalls zu Positionen, die bis auf ca. 10(10) pm in der Ebene des Rings liegen. Aufgrund der Winkelverengung Au-C(1)-C(2) bzw. Au-C(1)-C(5) von 109.5° (Tetraederwinkel) auf 98.9 bzw. 94.0° kommt auch das Atom H(11) bis auf 26(10) pm in der Ringebene zu liegen, so dass insgesamt eine nahezu planare C_5H_5 -Einheit resultiert.

Reaktionen der Cyclopentadienyl-Verbindungen $C_5R'_5MPR_3$ mit 1-Alkinen

Obwohl in den Goldverbindungen $(\eta^1-C_5H_5)AuPR_3$ und $(\eta^1-C_5Me_5)AuPR_3$ das Metallatom nur eine 14-Elektronenkonfiguration besitzt und koordinativ ungesättigt ist, findet bei der Einwirkung von C_2H_2 , HC_2Ph und HC_2CO_2Me auf V, VI bzw. X, XI nicht eine Addition des Alkins an das Metall sondern eine Spaltung der Au-C- σ -Bindung unter Eliminierung von C_5H_6 bzw. C_5Me_5H statt. Von den isolierten Produkten war XIV bereits bekannt; Coates und Parkin hatten den

kom-	IR	¹ H-NMR				¹³ C-NMR					³¹ P-NMR
licx	r(C≡C)	δ(C ₂ R")	J(PH)	δ(PR ₃)	J(PH)	δ(C ₂)	J(PC)	ô(R'')	ô(PR3)	J(PC)	δ
IJ	2102	7.76(m) 7.19(m)		(p)06.0	10.2						
(III)	2102	7.70(m)		1.67(m)		141.30(d)	120.0	132.41(s)	23.65(d)	27.6	66.46(s)
		6.72(m)		(pp)06.0	14.8 ^a	102.33(s)		128.91(s) 128.26(s)	20.0 9 (s)		
								127.64(s)			
Ş	2119	3.14(s)		1.55(m)		141.94(d)	133.8	154.64(s)	23.69(d)	28.0	66.10(s)
				0.85(dd)	15.0 ^{<i>h</i>}	93.76(d)	23.8	51.27(s)	20.05(s)		
۲N	1978	1.95(d)	5.2	1.56(m)		150.26(s)			23.52(d)	27.0	66.05(s)
				0.80(dd)	15.4 '	88.65(d)	22.9		19.98(s)		
IIV	2030	7.60(m)		2.00(m)		q		131.02(s)	22.84(d)	10.3	18.0(br)
		•		1.29(dd)	12.8 '			128.84(s)	20.32(d)	5.2	
								128.19(s)			
								125.46(s)			

IR.,¹H.,¹³C. UND ³¹P-NMR-DATEN DER VERBINDUNGEN XII, XIII, XV–XVII (IR in KBr; » in cm⁻¹; NMR in C₆D₆; 8 in ppm, Standard TMS int. (¹H und ¹³C.) here, see H DO 200 (³¹D), 1 - 1 - 1 - 1

TABELLE 3

^a J(HH) 5.9 Hz. ^b J(HH) 6.6 Hz.^c J(HH) 6.4 Hz.^d Signal nicht genau lokalisierbar.

•

Komplex aus $(PhC_2Au)_n$ und PPh₃ synthetisiert [20]. Die Verbindungen XII-XIV sind ebenfalls aus ClAuPR₃ und LiC₂Ph erhältlich. Nach dieser Methode waren bereits früher PhC₂AuPEt₃ [20] und PhC₂AuP(C₆H₁₁)₃ [21] dargestellt worden. Wie XIV sind vermutlich auch XII, XIII und XV, mit Sicherheit XVI, in Benzollösung monomer. Auf einen einkernigen Aufbau weisen ebenfalls die Massenspektren hin, in denen keine schwereren Teilchen als das Molekülion beobachtet werden.

 $C_{5}R'_{5}AuPR_{3} \xrightarrow[-C_{5}R'_{5}H]{HC_{2}Ph} PhC \equiv CAuPR_{3} \xleftarrow[-LiC_{2}Ph]{-LiC_{1}} ClAuPR_{3}$ $(V, VI, X, XI) \qquad (XII: R = Me; XIII: R = Pr'; XIV: R = Ph)$ $C_{5}H_{5}AuPPr_{3}^{i} + HC_{2}CO_{2}Me \rightarrow MeO_{2}CC \equiv CAuPPr_{3}^{i} + C_{5}H_{6}$ $(VI) \qquad (XV)$ $C_{5}R'_{5}AuPPr_{3}^{i} + C_{2}H_{2} \rightarrow HC \equiv CAuPPr_{3}^{i} + C_{5}R'_{5}H$ $(VI,X) \qquad (XVI)$

Die Reaktion von XVI mit überschüssigem VI bzw. X führt nicht zu dem dimetallierten Alkin $C_2(AuPPr_3^{'})_2$. Die Acidität von XVI ist offensichtlich sehr viel geringer als diejenige von C_2H_2 , HC_2Ph und HC_2CO_2Me , so dass eine Zweifachmetallierung nicht gelingt.

Bemerkenswerterweise reagieren auch die Pentamethylcyclopentadienylkupfer-Komplexe VII-IX, in denen – wie oben erläutert – wahrscheinlich eine η^5 -C₅Me₅-Metall-Bindung vorliegt, mit Phenylacetylen unter Bildung der Phenylalkinylkupfer-Verbindungen [PhC₂CuPR₃]_n. Die Vertreter mit PR₃ = PMe₃ und PPh₃ waren früher schon auf anderem Wege, ausgehend von [PhC₂Cu]_n, hergestellt worden [22]. Es sei darauf hingewiesen, dass PhC₂CuPMe₃ in Nitrobenzol dimer ist, während PhC₂CuPPr₃' (XVII) nach unseren Messungen in Benzol monomer vorliegt.

$$C_5Me_5CuPPr_3' + HC_2Ph \rightarrow PhC≡CCuPPr_3' + C_5Me_5H$$

(XVII)

Die IR- und NMR-Daten der Alkinylmetall-Verbindungen XII-XVII sind in Tab. 3 angegeben. Erstaunlich ist, dass die C=C-Valenzschwingung von XVI um mehr als 120 cm⁻¹ tiefer als diejenige von XII-XV liegt. Die UV-Spektren von XIII und XIV zeigen 2 Maxima bei 237 und 247 nm (siehe Exp. Teil), die sich zwar nicht in ihrer Lage, jedoch in ihrer Intensität deutlich von den Banden der reinen Alkine HC₂Ph und MeC₂Ph unterscheiden. Die erhebliche Differenz der ϵ -Werte (für HC₂Ph: $\epsilon = 16500$; für MeC₂Ph; $\epsilon = 17000$ [23]) dürfte auf die wesentlich stärker polarisierende Wirkung der Gruppe AuPR₃ im Vergleich zu H und CH₃ zurückzuführen sein.

Für CH_3AuPPh_3 sind ähnliche Reaktionen (z.B. mit HSPh und HC_2Ph) bekannt [24,25], die möglicherweise nach einem analogen Mechanismus ablaufen.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Kupferverbindungen [ClCuPMe₃]₄ [5] und [ClCuPPh₃]₄ [26] wurden nach Literaturvorschrift, die Goldverbindungen ClAuPR₃ ($\mathbf{R} = \mathbf{Me}, \mathbf{Pr}^1, \mathbf{Ph}$) nach der für ClAuPBu¹₃ angegebenen Methode [27] dargestellt.

Darstellung von [ClCuPPr;], (I)

Zu einer Suspension von 420 mg (4.24 mMol) CuCl in 10 ml Benzol tropft man langsam unter Rühren 0.9 ml (4.25 mMol) PPr₃⁻¹. Nach 20 h Rühren bei Raumtemperatur wird die fast farblose Lösung filtriert und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird in Pentan gelöst und die Lösung langsam auf -78° C gekühlt. Es kristallisieren farblose Nadeln, die noch einmal aus Pentan umkristallisiert und im Vakuum getrocknet werden. Ausbeute: 984 mg (90%). Schmp. 165–168°C. (Gef.: C, 41.38; H, 8.61; Cu, 24.10; Mol.-Gew. 511 (osmometr. in Benzol). C₁₈H₄₂Cl₂Cu₂P₂ ber.: C, 41.70; H, 8.17; Cu, 24.51%; Mol.-Gew. 518.46).

Darstellung von ClCu(PPr₃)₂ (II)

Die Darstellung erfolgt, ausgehend von 746 mg (7.53 mMol) CuCl und 3.2 ml (15.0 mMol) PPr₃, analog wie für I beschrieben. Man erhält farblose, nur wenig luftempfindliche Kristalle. Ausbeute: 2.94 g (93%). Schmp. 38–40°C. (Gef.: C, 51.08; H, 10.27; Cu, 15.60; Mol.-Gew. 433 (osmometr. in Benzol). $C_{18}H_{42}ClCuP_2$ ber.: C, 51.54; H, 10.09; Cu, 15.15%; Mol.-Gew. 419.48).

Darstellung von $C_5H_5CuPMe_3$ (III)

Eine Suspension von 558 mg (2.07 mMol) TlC_5H_5 in 5 ml Toluol wird tropfenweise mit einer Lösung von 310 mg (0.44 mMol) [ClCuPMe₃]₄ in 5 ml Toluol versetzt. Nach 1 h Rühren bei Raumtemperatur wird vom Niederschlag abfiltriert, das Filtrat auf ca. 3 ml eingeengt und langsam auf – 78°C gekühlt. Es bilden sich farblose, luftempfindliche Kristalle, die mit Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute: 240 mg (66%). Schmp. 108–109°C. (Gef.: C, 46.28; H, 6.53; Cu, 30.42; Mol.-Gew. 204 (MS). C₈H₁₄CuP ber.: C, 46.94; H, 6.89; Cu, 31.04%; Mol.-Gew. 204.71).

Darstellung von $C_5H_5CuPPr_3^{\prime}$ (IV)

Die Darstellung erfolgt, ausgehend von 325 mg (1.21 mMol) TlC₅H₅ und 290 mg (0.55 mMol) I, analog wie für III beschrieben. Man erhält farblose, luftempfindliche Kristalle. Ausbeute: 230 mg (71%). Schmp. 80–82°C. (Gef.: C, 57.70; H, 8.71; Cu, 21.65; Mol.-Gew. 288 (MS). $C_{14}H_{26}$ CuP ber.: C, 58.21; H, 9.07; Cu, 22.00%; Mol.-Gew. 288.90).

Darstellung der Komplexe $C_5H_5AuPR_3$ (V, VI) und $C_5Me_5AuPR_3$ (X, XI)

Eine Suspension von ca. 1.5 mMol LiC₅H₅ bzw. LiC₅Me₅ in 5 ml Benzol wird mit der äquimolaren Menge ClAuPR₃ versetzt und 1 h bei 10°C gerührt. Danach wird das Lösungsmittel im Vakuum entfernt, der Rückstand mit 8–10 ml Pentan versetzt, das Gemisch auf – 78°C gekühlt und die überstehende Lösung abdekantiert. Nach nochmaligem Aufschlämmen des verbleibenden Feststoffs in Pentan wird die Lösung über eine Fritte, die mit einer dünnen Schicht von Celite bedeckt ist, filtriert. Das Filtrat wird auf ca. 5 ml eingeengt und auf – 78°C gekühlt. Es bilden sich farblose, luftempfindliche Kristalle, die von dem überstehenden Lösungsmittel getrennt, bei – 78°C mit Pentan gewaschen und im Hochvakuum getrocknet werden. Sie färben sich bei mehrtägigem Liegen, selbst bei – 78°C unter N₂, violett. Ausbeute 60–75%.

V: Schmp. 87°C (Zers.). (Gef.: C, 28.25; H, 4.15; Au, 58.10; Mol.-Gew. 338 (MS). $C_8H_{14}AuP$ ber.: C, 28.42; H, 4.17; Au, 58.25%; Mol.-Gew. 338.15).

VI: Schmp. 105°C (Zers.). (Gef.: C, 39.72; H, 6.45; Au, 46.55; Mol.-Gew. 422 (MS). C₁₄H₂₆AuP ber.: C, 39.82; H, 6.21; Au, 46.64%; Mol.-Gew. 422.30).

X: Schmp. 92°C (Zers.). (Gef.: C, 46.08; H, 7.12; Au, 40.35; Mol.-Gew. 492 (MS). $C_{19}H_{36}AuP$ ber.: C, 46.34; H, 7.37; Au, 40.00%; Mol.-Gew. 492.44).

XI: Schmp. 83°C (Zers.). (Gef.: C, 56.89; H, 5.09; Au, 32.50; Mol.-Gew. 594 (MS). $C_{28}H_{30}$ AuP ber.: C, 56.57; H, 5.26; Au, 33.12%; Mol.-Gew. 594.49).

Darstellung der Komplexe C₅Me₅CuPR₃ (VII-IX)

Die Darstellung erfolgt, ausgehend von $[ClCuPR_3]_n$ und LiC_5Me_5 , analog wie für X, XI beschrieben. Wegen der besseren Löslichkeit der Kupferverbindungen in Pentan und der leicht eintretenden Zersetzung beträgt die Ausbeute nur ca. 30% (für VII, IX) bzw. 10% (für VIII). VIII wurde durch die NMR-Daten (Tab. 1) und das Massenspektrum $[m/e (I_r) 358 (8\%; M^+), 223 (14; CuPPr_3^{++}), 134 (100; C_5Me_4CH_2^{++})]$ charakterisiert.

VII: Schmp. 132°C (Zers.). (Gef.: C, 56.37; H, 8.61; Cu, 22.50; Mol.-Gew. 274 (MS). $C_{13}H_{24}CuP$ ber.: C, 56.81; H, 8.80; Cu, 23.12%; Mol.-Gew. 274.86).

IX: Schmp. 110°C (Zers.). (Gef.: C, 72.61; H, 6.47; Cu, 13.80; Mol.-Gew. 460 (MS). C₂₈H₃₀CuP ber.: C, 72.94; H, 6.56; Cu, 13.78%; Mol.-Gew. 461.07).

Darstellung der Komplexe PhC₂AuPR₃ (XII-XIV)

(a) Aus $C_5H_5AuPR_3$ bzw. $C_5Me_5AuPR_3$. Eine Lösung von ca. 0.15 mMol V, VI bzw. X, XI in 5 ml Toluol wird auf -78° C gekühlt und mit der äquimolaren Menge Phenylacetylen versetzt. Nach dreitägigem Stehen wird die Lösung filtriert und das Filtrat mit Pentan versetzt. Es bilden sich farblose Kristalle, die mit Pentan gewaschen und im Hochvakuum getrocknet werden. Ausbeute 40% (für XII) bzw. 70-75% (für XIII, XIV).

(b) Aus ClAuPR₃ und LiC₂Ph. Eine Suspension äquimolarer Mengen (ca. 1 mMol) ClAuPR₃ und LiC₂Ph in 5 ml Benzol wird 3 h bei Raumtemperatur gerührt und danach über eine Fritte, die mit Celite bedeckt ist, filtriert. Nach Zugabe von Pentan zu dem Filtrat erhält man einen farblosen Feststoff, der mit Pentan gewaschen und im Hochvakuum getrocknet wird. Ausbeute 28% (für XII), 73% (für XIII) bzw. 52% (für XIV). Der Komplex XII konnte nicht völlig analysenrein isoliert werden und wurde durch die NMR-Daten (Tab. 3) und das Massenspektrum [m/e (I_r) 374 (2%; M^+), 273 (4; AuPMe₃⁺), 76 (100; PMe₃⁺)] charakterisiert. XIV ist bereits in der

Atom	×	x	2	B_{11} bzw. B	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}	
Au	0.08468(4)	0.33774(2)	0.42471(2)	2.2(0)	2.3(0)	1.8(0)	0.1(0)	- 0.1(0)	0.2(0)	
P P	-0.1672(3)	0.3772(1)	0.3040(2)	2.0(1)	2.0(1)	1.7(1)	0.1(1)	- 0.1(1)	0.0(1)	
C(1)	0.3236(11)	0.2930(5)	0.5375(7)	2.2(4)	2.9(4)	2.8(4)	0.4(3)	0.0(3)	1.0(3)	
C(2)	0.2796(11)	0.2958(5)	0.6400(7)	2.5(4)	2.6(3)	3.5(4)	0.4(3)	-0.1(3)	- 0.4(3)	
C(3)	0.2282(11)	0.2159(5)	0.6607(6)	2.0(4)	3.7(4)	2.6(3)	0.4(3)	0.3(3)	0.7(3)	
C(4)	0.2394(12)	0.1609(5)	0.5739(8)	2.8(4)	2.5(3)	3.9(4)	0.2(3)	0.2(3)	-0.2(3)	
C(5)	0.2974(11)	0.2060(6)	0.4995(7)	2.6(4)	4.5(4)	1.6(3)	1.0(3)	0.0(3)	0.1(3)	
C(6)	-0.2803(11)	0.4583(5)	0.3611(6)	2.8(4)	2.1(3)	2.7(3)	0.4(3)	0.3(3)	0.0(2)	
C(1)	-0.4722(12)	0.4633(6)	0.3036(7)	3.5(4)	4.1(4)	3.4(4)	1.2(3)	0.5(3)	-0.2(3)	
C(8)	-0.2451(12)	0.4479(5)	0.4884(7)	4.0(5)	3.0(3)	2.6(3)	0.0(3)	1.0(3)	- 1.0(3)	
C(9)	-0.3021(9)	0.2826(4)	0.2621(6)	1.6(3)	2.3(3)	1.6(3)	- 0.2(2)	- 0.5(2)	-0.0(2)	
C(10)	-0.3308(12)	0.2390(5)	0.3653(7)	3.9(5)	2.7(3)	2.9(4)	-0.4(3)	0.8(3)	0.4(3)	
C(11)	-0.2210(12)	0.2202(5)	0.2002(6)	4.2(5)	2.4(3)	2.7(3)	- 0.3(3)	0.9(3)	- 0.7(3)	
C(12)	-0.1365(10)	0.4224(5)	0.1737(6)	2.5(4)	2.3(3)	2.1(3)	- 0.2(3)	-0.0(3)	0.4(2)	
C(13)	-0.0119(11)	0.4981(5)	0.2017(7)	3.2(4)	3.0(4)	2.9(3)	-0.8(3)	0.6(3)	0.1(3)	
C(14)	-0.2971(11)	0.4453(5)	0.0823(7)	3.1(4)	3.4(4)	2.4(3)	- 0.3(3)	0.0(3)	0.6(3)	
(11)H	0.389(12)	0.328(5)	0.518(8)	4.0						
H(21)	0.297(12)	0.341(5)	0.687(8)	4.0						
H(31)	0.192	0.202	0.727	4.0						

ATOMPARAMETER. DER ANISOTROPE TEMPERATURFAKTOR IST DEFINIERT: $T = \exp[-1/4(h^2a^*2B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^*b^*B_{12} + 2hka^*b^*B_{13} + 2kb^*c^*B_{23})$; B_{ij} in 10⁴ pm²

TABELLE 4

4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4,0	4.0	4.0	4.0	4.0	4,0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
0.569	0.430(7)	0.343	0.210	0.338	0.321	0.498	0.515	0.532	0.213	0.398	0.347	0.436	0.129	0.184	0.245	0.139	0.130	0.258	0.223	0.100	0.007	0.076
0.099	0.194(6)	0.517	0.473	0.510	0.411	0.387	0.487	0.456	0.301	0.279	0.190	0.218	0.249	0.167	0.206	0.369	0.507	0.487	0.550	0.495	0.454	0.397
0.211	0.324(11)	-0.221	-0.529	-0.516	-0.522	-0.282	-0.298	-0.125	-0.411	- 0.412	-0.406	-0.228	-0.217	- 0.284	-0.106	-0.099	0.012	0.095	- 0.059	-0.345	-0.280	-0.374
I (41)	H(51)	f(61)	I(71)	I (72)	(C))	H(81)	I (82)	H(83)	H(91)	H(101)	H(102)	H(103)	(111)	H(112)	H(113)	H(121)	H(131)	H(132)	((133)	H(141)	H(142)	H(143)

134

Literatur beschrieben (Gef.: Schmp. 165°C; Lit. 164°C [20]. UV-Maxima (CH₂Cl₂): λ 237.0 nm (ϵ = 59500), 247.0 nm (ϵ = 50000)).

XIII: Schmp. 129°C. UV-Maxima (CH₂Cl₂): λ 236.5 nm (ϵ = 98000), 247.2 nm (ϵ = 78000). (Gef.: C, 44.42; H, 5.73; Au, 42.80; Mol.-Gew. 335 (osmometr. in Benzol), 458 (MS). C₁₇H₂₆AuP ber.: C, 44.55; H, 5.72; Au, 42.97%; Mol.-Gew. 458.34).

Darstelllung von $(MeO_2C)C_2AuPPr'_3(XV)$

Die Darstellung erfolgt, ausgehend von 60 mg (0.14 mMol) VI und 12 mg (0.14 mMol) HC_2CO_2Me in 1 ml Toluol, wie für XII-XIV nach (a) beschrieben. Man erhält einen rosafarbenen Feststoff. Ausbeute 45 mg (72%). Schmp. 120°C. (Gef.: C, 35.53; H, 5.59; Au, 44.60; Mol.-Gew. 440 (MS). $C_{13}H_{24}AuO_2P$ ber.: C, 35.47; H, 5.50; Au, 44.74%; Mol.-Gew. 440.28).

Darstellung von HC₂AuPPr¹₃ (XVI)

In eine Lösung von 31 mg (0.073 mMol) VI oder 90 mg (0.18 mMol) X in 2 ml Toluol wird bei 0°C mit einer Kapillare C_2H_2 eingeleitet. Nach 5 h wird die Lösung über Filterwatte filtriert, das Filtrat auf -78°C gekühlt und mit wenigen ml Pentan versetzt. Man erhält nahezu farblose Kristalle, die mit Pentan gewaschen und im Hochvakuum getrocknet werden. Ausbeute 60–70%. Schmp. 66°C (Zers.). (Gef.: C, 34.75; H, 5.59; Au, 51.30; Mol.-Gew. 380 (osmometr. in Benzol), 382 (MS). $C_{11}H_{22}$ AuP ber.: C, 34.57; H, 5.80; Au, 51.53%; Mol.-Gew. 382.24). IR (KBr): ν (CH) 3284 cm⁻¹.

Darstellung von PhC₂CuPPr₃ (XVII)

Die Darstellung erfolgt, ausgehend von 518 mg (1.00 mMol) I und 108 mg (1.00 mMol) PhC₂Li, wie für XII-XIV, Methode (b), beschrieben. Man erhält ein gelbgrünes Pulver. Ausbeute 108 mg (33%). Schmp. 76°C. (Gef.: C, 62.33; H, 8.42; Cu, 19.60; Mol.-Gew. 340 (osmometr. in Benzol). $C_{17}H_{26}CuP$ ber.: C, 62.84; H, 8.07; Cu, 19.56%; Mol.-Gew. 324.92).

Der Komplex kann auch ausgehend von VIII und PhC_2H , wie für XII-XIV nach (a) beschrieben, dargestellt werden. Diese Reaktion wurde, da nur geringe Mengen an VIII zur Verfügung standen, im NMR-Rohr durchgeführt.

Röntgenstrukturanalyse von VI

Bei Kristallisation aus Toluol/Hexan, Toluol/Pentan oder Pentan bildet VI meist hellgelbe dünne Plättchen, die sich jedoch wegen ihrer mechanischen Empfindlichkeit für eine Strukturuntersuchung als ungeeignet erwiesen. In einem Fall konnten unter sonst gleichen Bedingungen aus Toluol/Hexan auch nadelförmige Einkristalle erhalten werden. Ein Exemplar mit den Abmessungen $0.3 \times 0.3 \times 0.2$ mm wurde in einem Markröhrchen unter N₂ montiert und bei ca. -120° C röntgenographisch vermessen (Vierkreisdiffraktometer Syntex P2₁, Mo- K_{α} , Graphit-Monochromator, λ 71.069 pm). Rotationsaufnahmen um die Kristallachsen ergaben eine monokline Elementarzelle mit *a* 822.5(2), *b* 1562.3(2), *c* 1248.3(3) pm, β 106.81(2)°, *V* 1535.5 × 10⁶ pm³; Raumgruppe P2₁/c, Z = 4, d(ber.) 1.82 g/cm³. Es wurden 2697 symmetrieunabhängige Reflexe gemessen (4.5° $\leq 2\theta \leq 50^{\circ}$) und davon 2417 als beobachtet klassifiziert ($I_0 > 2.96\sigma(I_0)$); sie wurden nach der Ψ -scan Methode bezüglich Absorption korrigiert (μ_{Mo} 9.9 mm⁻¹).

Fig. 1. Kristallstruktur von VI bei -120°C.

Da die Position des Schweratoms einer Pattersonsynthese entnommen werden konnte, liessen sich die übrigen Atome, z.T. auch die Wasserstoffatome, über sukzessive Fourier- bzw. Differenz-Fourier-Synthesen lokalisieren. Nicht-lokalisierbare H-Atome wurden auf idealen berechneten Positionen (mit C-H-Abständen von 97 pm und B-Werten von 4×10^4 pm²) in das Modell eingefügt. Nach Abschluss der Verfeinerung nach der Methode der kleinsten Quadrate ergab sich für 2417 (2697) Reflexe bei 148 verfeinerten Variablen ein R-Wert von $R_1 = 0.037$ (0.040) bzw. $R_2 = 0.044$ (0.044) ($R_1 = (\Sigma ||F_{obs}| - |F_{calc}||)/\Sigma |F_{obs}|$; $R_2 = [(\Sigma w (F_{obs} - F_{calc})^2)/(\Sigma w F_{obs}^{-2})]^{1/2})$. Die Maxima der Differenzelektronendichte lagen unter 0.9 e Å⁻³. Die bei diesem Stand resultierenden Atomparameter sind in Tab. 4 angegeben; Figur 1 zeigt das Numerierungsschema. Hinweise für ungewöhnliche intermolekulare Abstände sind nicht vorhanden. Alle Rechnungen wurden mit Hilfe des Programmsystems Syntex-XTL auf einem Kleinrechner NOVA 1200 unter Verwendung von Atomformfaktoren für ungeladene Atome durchgeführt. Eine Liste der Strukturfaktoren kann bei den Autoren angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir sehr herzlich für die Unterstützung mit Personal- und Sachmitteln. Unser Dank richtet sich ausserdem an Frau Dr. G. Lange für die Aufnahme der Massenspektren, an Frau U. Neumann und Frl. R. Schedl für die Durchführung der Elementaranalysen sowie an die Herren Dr. W. Buchner und Dr.D. Scheutzow für NMR-Messungen. Die Firma DEGUSSA AG unterstützte die Untersuchungen durch eine grosszügige Chemikalienspende.

Literatur

- 1 J. Wolf, H. Werner, O. Serhadli und M.L. Ziegler, Angew. Chem., 95 (1983) 428; Angew. Chem. Int. Ed. Engl., 22 (1983) 414.
- 2 H. Werner, Pure Appl. Chem., 54 (1982) 177.
- 3 H. Werner, Angew. Chem., 95 (1983) im Druck; Angew. Chem. Int. Ed. Engl., 22 (1983) im Druck.
- 4 M.R. Churchill und F.J. Rotella, Inorg. Chem., 18 (1979) 166.
- 5 H. Schmidbaur, J. Adlkofer und K. Schwirten, Chem. Ber., 105 (1972) 3382.
- 6 F.A. Cotton und T.J. Marks, J. Am. Chem. Soc., 91 (1969) 7281.
- 7 R. Hüttel, U. Raffay und H. Reinheimer, Angew. Chem., 79 (1967) 859; Angew. Chem. Int. Ed. Engl., 6 (1967) 862.
- 8 G. Ortaggi, J. Organomet. Chem., 80 (1974) 275.
- 9 G.A. Carriedo, J.A.K. Howard und F.G.A. Stone, J. Organomet. Chem., 250 (1983) C28.
- 10 H. Werner, H.-J. Kraus, U. Schubert, K. Ackermann und P. Hofmann, J. Organomet. Chem., 250 (1983) 517.
- 11 F.A. Cotton in F.A. Cotton und L.M. Jackman (Hrsg.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Verlag Academic Press, New York, 1975, Kap. 10.
- 12 F.A. Cotton und J. Takats, J. Am. Chem. Soc., 92 (1970) 2353.
- 13 L.T.J. Delbaere, D.W. McBride und R.B. Ferguson, Acta Crystallogr. B, 26 (1970) 515.
- 14 T.V. Baukova, Yu.L. Slovokhotov und Yu.T. Struchkov, J. Organomet. Chem., 220 (1981) 125.
- 15 P.D. Gavens, J.J. Guy, M.J. Mays und G.M. Sheldrick, Acta Crystallogr. B, 33 (1977) 137.
- 16 D.M.P. Mingos in G. Wilkinson, F.G.A. Stone und E.W. Abel (Hrsg.), Comprehensive Organometallic Chemistry, Verlag Pergamon Press, Oxford, 1982. Vol. 3, Kap. 19.
- 17 P. Jutzi, Nachr. Chem. Tech. Lab., 26 (1978) 422.
- 18 T.A. Albright, R. Hoffmann, Y.-C. Tse und D. Ottavio, J. Am. Chem. Soc., 101 (1979) 3812.
- 19 D.M.P. Mingos, Nature (Phys. Sci.), 229 (1971) 193; M.J. Calhorda, D.M.P. Mingos und A.J. Welch, J. Organomet. Chem., 228 (1982) 309; D.G. Evans und D.M.P. Mingos, J. Organomet. Chem., 232 (1982) 171.
- 20 G.E. Coates und C. Parkin, J. Chem. Soc., (1962) 3220.
- 21 J. Bailey, J. Inorg. Nucl. Chem., 35 (1973) 1921.
- 22 G.E. Coates und C. Parkin, J. Inorg. Nucl. Chem., 22 (1961) 59.
- 23 H.K. Blake, D.H.S. Horn und B.C.L. Weedon, J. Chem. Soc., (1954) 1704.
- 24 A. Johnson, R.J. Puddephatt und J.L. Quirk, J. Chem. Soc., Chem. Commun., (1972) 938; A. Johnson und R.J. Puddephatt, J. Chem. Soc., Dalton Trans., (1975) 115.
- 25 C.M. Mitchell und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1972) 102.
- 26 F. Glockling und K.A. Hooton, J. Chem. Soc., (1962) 2658.
- 27 H. Schmidbaur und A.A.M. Aly, Z. Naturforsch. B, 34 (1979) 23.